人教版七年级数学上册《实际问题与一元一次方程》PPT优质课件(第1课时),共29页。
素养目标
1. 理解配套问题、工程问题的背景.
2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.
3. 掌握用一元一次方程解决实际问题的基本过程.
探究新知
配套问题
例 某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母. 1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?
解:设应安排 x 名工人生产螺钉,(22-x)名工人生产螺母.
依题意,得
2000(22-x)=2×1200x .
解方程,得 x=10.
所以 22-x=12.
答:应安排10名工人生产螺钉,12名工人生产螺母.
归纳总结
生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:
1.利用配套问题中物品之间具有的数量关系作为列方程的依据;
2.利用配套问题中的套数不变作为列方程的依据.
工程问题
例 整理一批图书,由一个人做要 40 h 完成. 现计划由一部分人先做 4 h,然后增加 2人与他们一起做8 h,完成这项工作. 假设这些人的工作效率相同,具体应先安排多少人工作?
分析:在工程问题中:工作量=人均效率×人数×时间;
工作总量=各部分工作量之和.
解:设先安排 x 人做4 h,根据题意得等量关系:
可列方程
解方程,得
4x+8(x+2)=40,
4x+8x+16=40,
12x=24,
x=2.
答:应先安排 2人做4 小时.
归纳总结
解决工程问题的基本思路:
1. 三个基本量:工作量、工作效率、工作时间.
它们之间的关系是:工作量=工作效率×工作时间.
2. 相等关系:工作总量=各部分工作量之和.
(1) 按工作时间,工作总量=各时间段的工作量之和;
(2) 按工作者,工作总量=各工作者的工作量之和.
3. 通常在没有具体数值的情况下,把工作总量看作1.
... ... ...
关键词:实际问题与一元一次方程PPT课件免费下载,一元一次方程PPT下载,.PPTX格式;